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Illustrations 

1 "Stretched-space" parameter, t, plotted as a function of altitude, z. 6 
2 The solid curve depicts a prescribed "stretched" space vertical PSD having 8 

a Log-Log spectral slope of-2, Lc = 3.87 km, and unit variance. The 
dashed curve depicts the autoregressively determined vertical PSD after 
generating vertical structure in the "stationary" vertical dimension. 

3 The solid curve depicts the theoretical vertical PSD at 51.2 km altitude 8 
where the prescribed vertical correlation length takes a value ofLc= 1.72 
km and where the variance takes a value of 8.76x10 . The dashed curve 
plots the autoregressively determined vertical PSD after remapping back to 
the "normal" non-stationary space 

4 The solid curve shows a prescribed PSD for the structure in the horizontal 9 
dimension at 51.2 km altitude for a horizontal correlation length of L = 
32.9 km. The dashed curve depicts the autoregressively determined 
horizontal PSD in normal space. 

5 Prescribed (smooth curve) and obtained (variable curve) variance plotted as 9 
a function of altitude 

6 False color realization of two-dimensional vertical sheet of non-stationary 11 
stochastic structure. 
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A Fast "Stretched Space" Method for Generating 
Synthetic Vertical Sheets of Non-Stationary 

Stochastic Atmospheric Structure 

1. INTRODUCTION 

Atmospheric fluctuations in wind speed, temperature, and density can be characterized by 
continuous power spectral density functions. Such spectra, parameterized by spectral slope, variance, 
and correlation lengths are often used in simulating an environment or predicting atmospheric 
structure. Multidimensional fast Fourier transform synthesis provides a means for filtering white 
noise with spatial filters to simulate a stationary time or spatial data set. Autoregression synthesis 
provides a fast means for simulating a one-dimensional non-stationary spatial structure sequence. 

The Phillips Laboratory Strategic High Altitude Atmospheric Radiance Code (SHARC)1 uses 
first principles to calculate point-to-space and limb-viewing atmospheric background infrared (IR) 
radiance and transmittance under both local-thermal-equilibrium (LTE) and non-local-thermal- 
equilibrium (NLTE) conditions above 50 km. Release 3 of the SHARC code2 predicts IR radiation 
and transmittance in the 1-40 urn spectral region and includes important bands from the major 
isotopes of NO, CO, H20, 03, OH, C02, CH4, and NO+. Specific local atmospheric environments 
can be specified through region definitions, and diurnal characteristics can be specified through user 
or program generated multiple vertical concentration profiles. A subroutine module breaks a given 
line-of-sight (LOS) specification into small segments and determines the composition and properties 
of each segment. Each segment is determined by the intersection of the LOS with an altitude layer 
boundary, defined by input atmospheric profiles. Appropriate profiles of temperature, pressure, and 
molecular state densities are determined for each segment. 

Received for publication 17 March 1995 
iSharma, R.D., Gruninger, J.H., Sundberg, R.L., Duff, J.W., Bernstein, L.S., Robertson, D.C., and Healey, R.J., (1991) 
Description ofSHARC-2, The Strategic High Altitude Atmospheric Radiance Code, Phillips Laboratory technical report, 

PL-TR-91-2071, ADA 239 008 
2Gruninger, J., Sundberg, R.L., Duff, J.W., Bernstein, L.S., Matthew, M.W., Adler-Golden, S., Robertson, D., Sharma, 
R, Brown, J.H., Healey, R, and Vail J., (1994) SHARC - 3, A Model for Infrared Radiance at High Altitudes, 
Proceedings SPIE - The International Society of Optical Engineering, V2223, April 1994, Orlando, Florida. 



A future release of SHARC3 will have the ability to provide realizations of atmospheric infra- 
red volume-emission perturbations that occur from fluctuations in temperature and density of the 
contributing molecular species. Version 4 of the SHARC code envisions a capability to evaluate 
radiance structure from estimated variances in the standard temperature and density profiles. The 
algorithms will simulate IR fluctuations that must depend on relatively small fluctuations in at- 
mospheric species number densities, vibrational state populations, and the kinetic temperatures along 
a given line-of-sight4. Where NLTE effects dominate, (generally above 50 km) a small fluctuation in 
kinetic temperature can produce correlated, anti-correlated, or no change in the vibrational state 
temperature. Such changes ultimately depend on the relative contributions from total number 
density, temperature-dependent kinetic rates, and radiative relaxation. A proper description of the 
temperature/density/radiance field as viewed from a point sensor is thus needed to enable SHARC to 
correctly compute the radiance structure field. 

To provide a realistic but practical two-dimensional structure scene capability requires a 
creative and efficient algorithm. This report presents a method for producing a two-dimensional 
vertical sheet of atmospheric non-stationary synthetic stochastic structure by means of a "stretched 
space" mapping transformation. The benefit of the transform is that it requires just a single filter pass 
in stationary space to generate the entire structure and so reduces the computation time by the order 
of the array. This report expands upon the results expressed in three previous reports that dealt with 
one-dimensional autoregression5, two-dimensional autoregression/moving average6, and three- 
dimensional hybrid7 structure simulation. 

3Sundberg, R.L., Gruninger, J., De, P., and Brown, J..H. (1994) Infrared Radiance Fluctuations In The Upper 
Atmosphere, Proceedings SPIE - The International Society of Optical Engineering, V2223, April 1994, Orlando, 
Florida. 
4Sears, R.D., Strugala, L.A., Newt, J., Robertson, D., Brown, J.H., Sharma, R, (1994) Simulation of the Infrared 
Structured Earthlimb Background Using the SHARC Radiance Code, 32nd Aerospace Sciences Meeting and Exhibit, 
Reno, NV, January 1994. 
5Sundberg, R.L., Gruninger, J., De, P., and Brown, J.H., (1994) Infrared Radiance 5Brown, J.H., (1993) Atmospheric 
Structure Simulation: An Autoregressive Model for Smooth Geophysical Power Spectra with Known Autocorrelation 
Function, Phillips Laboratory technical report, PL-TR-2185, ERP#1128, ADA 276691. 
6Brown, J.H., (1993) Atmospheric Structure Simulation: An ARMA Model for Smooth Isotropie Two-Dimensional 
Geophysical Power Spectra, Phillips Laboratory technical report, PL-TR-93-2224, ERP#1132, ADA 280476. 
7Brown, J.H., (1994) Synthetic 3-D Atmospheric Temperature Structure: A Model for Known Geophysical Power 
Spectra Using a Hybrid Autoregression and Fourier Technique, Phillips Laboratory technical report PL-TR-94-2150, 
ERP#1150, ADA 289058. 



2. PSD MODEL DISCUSSION 

Atmospheric power spectral density functions often are modeled by three parameter isotropic 

one-dimensional double-sided power law functions of the form8'9: 
aVvr(v + l/2) 

PSD(k)-. 
^T(v)(a2+k2] 

v+l/2 (1) 

Here k represents spatial frequency, a2 is the variance, v determines the asymptotic power law 
dependence, and a is a parameter that determines the "low frequency" PSD shape. The relationship 
between the frequency domain PSD and the time or spatial domain autocorrelation function is 
specified by their Fourier transform pairs. Thus the autocorrelation function, (ACF), for the real even 
PSD function is5: 

ACF(s)= 
<j220-v)(2nasyKv(2%as) 

(2) 

where Kv is the Bessel function of the second kind of fractional order. In this form the PSD and 
ACF are stationary and independent of altitude The parameter "a" can be expressed in terms of the 

r(v+i/2) 
integral scale, L, of the autocorrelation function such that a = —j=—rz • For the moment we 

2^%T{y)* Lc 

assume "a" is a constant and "Zc" is a measure of the "correlation length" t. The above may be 
rewritten as: 

ACF(s) = 
.22(i-v) 

F(v) 

2^Kv+K)f „ f^Kv+/Q] 
2^r(v)4 

K 
2-JnF(y)Lc 

(2) 

or, ACF(s)=B 
f       5V 

c— KAC- 
LJ 

(3) 

a22(1_v) 

where B=    _, x    and, C = 2n 
r(v) 

24nr(yy 
r(v + i/2> 

8Tatarski, V.l., (1961) Wave Propagation in a Turbulent Medium, Eq. 1.11, McGraw-Hill. 
9Futterman, W.I., Schweitzer, E.L., Newt, J.E., (1991) Estimation of Scene Correlation Lengths, Characterization, 
Propagation, and Simulation of Sources and Backgrounds, Proceedings SPIE - The International Society of Optical 
Engineering, V1486, ppl27-140, April 1991, Orlando, Florida. 
' Reference 5 describes the correlation length as the equivalent width of the autocorrelation function, pp. 5-6. 



3. THE "STRETCHED SPACE" TRANSFORMATION 

The general definition of the autocorrelation sequence of the indexed families of "real" 
random variables, {xn} and {xm} , of a probabilistic process is10: 

ACSxx(n,m) = E[x„xm] = f f xnxmp     (xn,n,xm,m)dx„dxm 
J-CO   J-00 "   m 

where E is the expected value, px x  ,xn,n,xm,m) is the joint probability density function, and 

where the bold letters correspond to the dummy variables of the probability density function. Since 
the autocovariance function with zero mean is identical to the autocorrelation function, and with 
index m corresponding to z and index m corresponding to s, the autocovariance function becomes, 

ACF(z,s) = E[f(z)f(z + s)] (4) 

where/is a continuous range of random values. Now suppose the PSD and ACF are stationary and 
correspond to fluctuations of atmospheric temperature in the direction, z. Under "stationary" 
conditions, the autocovariance function is not a function of "z" and we can therefore write: 
ACF(s) = E[f(z)f(z + s)]. For the stationary condition, we assume that/z) is ergodic and we can 
estimate ACF(s) by: 

ACF{s) - — [   {f(z)f{z + s)]dz, when/(z) is continuous or, 
2p *-P 

1       N 

ACF(s) = ^ {/(z(.)/(z,. + s)}, when/(z) is discrete, where zt =i*Az, with Az the spacing 
2N + 1 ,-=_jy 

between the zi levels. 
We now wish to examine the case where z corresponds to altitude and 

ACF(z,s) = E[f(z)f(z + s)] is non-stationary. We propose to transform the lag "s " to the new lag 
variable "/' by the monotonic function: y = y(z,s) which has an inverse transform 

s(z,y) = v"1 (z,s). We also will transform the altitude "z" to a space "r" by the monotonic function: 
t = t(z), where y has uniform spacing in t. These transforms provide the stationary autocovariance 
function ACF (y): 

ACF(y) = E[f(t)f(t + y)] (5) 

Now, let us consider the case where the parameter Lc in Eq. (2) is no longer constant but depends on 
altitude z. If Lc depends on z, then the parameter "a" in Eq. (1) depends upon z, which of course 
means the PSD is non-stationary. Rewriting Eq. (3) for a "correlation length" Lc(z,s) that depends 
upon the altitude z and lag s, the non-stationary autocovariance function ACF (z,s) becomes: 

10 Oppenheim, A.V., and Schafer, R.W., (1975), Digital Signa! Processing, Chapter 8, Prentice-Hall, New Jersey. 



ACF(z,s)=B 
V 

c- 
Lc(z,s)J 

K„ C  
V   Lc(z,s)J 

We assume that the "measured" parameter "a" in the equation for the PSD is an average over 
altitude,    so    that   a(z)    may   be    defined   as    an   average   of   the   reciprocal    of   Lc: 

acz) oc = - f * , where Lc(x,0) is a function of altitude. 
Lc(z,s)    s*    4(x,0) 

Now, defining the transformation of s to v by: 

— p+s    dx 
y = y(z,s) = Lc^ 

4(x,0) 

where Lc is a constant that will be set for convenience, then, ACF(y)= B 

(6) 

\Lr   J v4  J 
is 

stationary and not a function of altitude. In Eq. (6) we constrain Lc to positive values so that 
v = y(z,s) is monotonic. We also assume that v is a constant independent of altitude. 

Turning our attention to the transformation of z to t = t (z), we set Eq. (4) equal to Eq. (5), or 

ACF(z,s)=ACF{y) (?) 

E[f(z)f(z + s)]=E[f(t)f(t + y)] 

Equation (7) is satisfied in general when 

f(z+s)=f(t+y) (8) 

Equations (8) are true for t(z) = t and t(z + s) = t + y = t(z) + v. To construct the transformation, we 

arbitrarily set z0 = t0 = t0(z0) = 50km. Any other z value is found from t[z0 +s(z0,y)]= t0 + v. The 

transformation t[z + s(z,y)]=t(z) + y may be used for all z values since, we have for z = zx, 

t(zx) = t0 + y(zQ,zx -z0), and, in general, 
— PO+(Z-^O)    dx 

t(z) = t0+y(z0,z-z0) = t0+L\ 
*o L {X,\}) 

or, 

t(z) = t0 + Lcj 
dx 

% Lc(x,0) 
(9) 



We have arbitrarily set t0=z0 = 50 km. We would also like t = 300 km when z = 300 km 

so that the range in z is the same as the range in t. The limits determine Lc which is found from 

goo     4      , — 250 
50   Lc(z,0) 

f300 f30 

[  dt=[ 
•50 -50 

-dz  or   Lr = 

io 
1 00 

o 4(z,0) 
dz 

"Stretched Space" Vs Altitude 

Thus the real space altitude, "z" can be 
"mapped" into a stretched space, "t(z)" 
where the auto-covariance function ACF 
(y) is stationary. Given a positive 
function, Lc(z) (see for example 
reference 7), Figure 1 plots "stretched 
space", t, as a monotonically increasing 
function of altitude, z. In practice, the 
increments in t were equally spaced by 
0.244 km. 

4. RESULTS 

250 

200 

1 50 

300 

Altitude, "z" (km ) 

Figure 1.  "Stretched-space" parameter, t, plotted 
as a function of altitude, z. 

The following discussion is 
aimed at producing a practical and ef- 
ficient two-dimensional sheet of non- 
stationary stochastic atmospheric structure consistent with having pre-assigned vertical and 
horizontal power spectral densities and autocorrelation functions. In this section, we compute the 
structure in "stretched" space, map back to "normal" space, and then examine and compare it to 

the prescribed structure. Correlation lengths and a2 variances were taken from the data of 
Reference 4 and fitted to monotonic "logistic dose response" curves of the form 

y = a + b/(l + (x/c)d) . 

A variety of digital filter synthesis methods may be employed to convert a series of 
Gaussian random numbers to correlated stochastic arrays. Perhaps the most frequently employed 
technique is the Fourier technique where Gaussian numbers are Fast Fourier Transformed, 
multiplied by a suitable filter function, and inverse Fast Fourier Transformed back to Cartesian 
space. In effect the one-dimensional process is represented by the simulated data 5(0 for the 

f rr.—TTT \ 
series  t by:   S{t) = FFT Plhcor (*> ) 

At 
FFT(e,) where   s,   are the random numbers.  In 

developing this report we performed the two-dimensional synthesis by Fourier transforming first 
in the vertical direction and then in the horizontal direction. Ptheor(k) for the vertical dimension is 

the "stretched" space PSD with unit variance, where we used Lc = Lc= 3.87. For the horizontal 
dimension, we used the actual correlation length appropriate for that level, a was applied at the 
end of the process. 



Using discrete Fourier transforms to estimate spectra, special care must be taken to avoid 
several well known pitfalls. The spacing between points must be kept small to avoid aliasing 
effects. Also the number of points simulated must be large so that numerical integration of the 
power spectrum in frequency space approximates the prescribed variance. On the other hand, 
since the method of AR synthesis provides the correct variance, a digital autoregressive (linear 
prediction) technique will avoid the FT variance problem. In addition, data generated by the AR 
process is "extendible" while that generated from Fourier synthesis is not. By "extendible" we 
mean that a given array can be made larger or "extended" beyond its present bounds by applying 
the AR process to data near the edges of the array. In applying the AR process, two new 
difficulties occur. First, one must decide how many AR coefficients to apply to achieve the 
desired statistics. Generally, the more coefficients that are used the better the desired PSD will be 
simulated. That is, an AR(p) process will exactly simulate the ACF to p lags. An increase in p 
translates into a better approximation of the remaining lags and therefore into less residual error of 
the PSD. In applying the AR process, the major difficulty is a need to overcome the filter 
relaxation time. If necessary this can be overcome by making several passes through the original 
white noise. Since it is advantageous to be able to continue a given structure array to a larger 
size, we set aside the Fourier technique and used instead a digital autoregressive (linear 
prediction) technique. The method has been described extensively in the literature11 12 and by us 
(see references 5-7). We simply state here that a sequence of values along each horizontal row and 
vertical column was generated from six autoregression coefficients, bj5 by the expression: 

6 

YÜ)=S(j)-YbjY(J-j) where the bj values were determined from a Levinson algorithm (see 
7=1 

for example, reference 5). 

11 Marple, S.L. (1987) Digital Spectral Analysis with Applications, Chapter 6, Prentice-Hall, Englewood Cliffs, New 

Jersey 
12 Kay, Steven M. (1988) Modern Spectral Estimation, Theory & Application, Prentice-Hall, Englewood Cliffs, New 

Jersey 
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Figure 2. The solid curve depicts a prescribed 
"stretched" space vertical PSD having a 

Log-Log spectral slope of -2, Lc = 3.87 
km, and unit variance. The dashed curve 
depicts the autoregressively determined 
vertical PSD after generating vertical 
structure in the "stationary" vertical 
dimension, 

generating     vertical     structure     in     the 
"stationary"   vertical   dimension.   Here   all 
vertical columns in the array were used to 
obtain    the    best    estimate     of    the    6 
autoregressive coefficients.  Good agreement 
obtains between the prescribed PSD and the 
PSD of the synthetic vertical structure. 

Remapping the stationary vertical 
structure in "stretched" space back to 
"normal" space, we obtain the desired non- 
stationary vertical structure. The solid curve 
in Figure 3 represents the theoretical vertical 
PSD at 51.2 km altitude where the prescribed 
vertical correlation length takes a value of Lc 

= 1.72 km and where the variance takes a 
value of 8.76 x 10"4. Also plotted in Figure 3 
is a dashed curve that represents the 
autoregressively determined vertical PSD 
after remapping back to the "normal" "non- 

A theoretical "stretched" space vertical 
PSD having  a prescribed  Log-Log  spectral 

slope of -2, Lc= 3.87, and unit variance is 
shown by the solid curve in Figure 2. This 
figure is typical of the graphs in this section 
that show Log-Log plots of PSD's measured in 

(8 temperature I temperature)' 
and wave- 

wavenumber 
number measured in km~l. The figures are 
obtained for vertical arrays having 8192 
columns by 1024 rows with spacings of 0.1 
km in the horizontal dimension and 0.244 km 
in the vertical dimension. These values 
translate to a horizontal range of 0-81.9 km 
and a vertical range of 50-300 km. A dashed 
curve in Figure 2 represents the au- 
toregressively determined vertical PSD after 
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Wavenumber (km" ) 
The solid curve depicts the theoretical 
vertical PSD at 51.2 km altitude where 
the prescribed vertical correlation length 
takes a value of Lc= 1.72 km and where 

the variance takes a value of 8.76x10 . 
The dashed curve plots the auto- 
regressively determined vertical PSD after 
remapping back to the "normal" non 
stationary space. 



10c 

10- 

Horizontal PSD 
at 51.2 km altitude 

10 -2    _ 

|   io-3 

10 -4    _ 

Q     10'5 

D. 
10-6 

io-7 - 

10-8 

Specified PSD 
AR PSD of Synthetic Structure 

10 -4 IO'3   10"2   10-1    10° 

Wavenumber (km"1) 

Figure 4. The solid curve shows a prescribed PSD 
for the structure in the horizontal 
dimension at 51.2 km altitude for a 
horizontal correlation length of Lc= 32.9 
km. The dashed curve depicts the 
autoregressively determined horizontal 
PSD in normal space. 

determined horizontal PSD in normal 
space. Comparison of the two curves 
shows good agreement between the two. 

Figure 5 depicts the prescribed 
(smooth curve) and obtained (variable 
curve) variances plotted against altitude. 
The spread in the variance is a function 
of the data spacing and number of points 
in a layer. It would decrease as the 
number of points increases or as the 
number of realizations increases. Said 
another way, the peaks, dips and apparent 
layering of the variance is artificial and 
due to the limited sample of transverse 
distance. The ragged curve would 
converge to the smooth curve as the 
transverse distance increases. 

10 

stationary" space. In this space the structure 
varies with altitude, so only 11 horizontal rows 
of the array were used to obtain an estimate of 
the 6 autoregressive coefficients. Consequently 
the AR estimate of the vertical PSD is quite 
variable. In mapping back from the equally 
spaced stretched t points to the equally spaced 
vertical z points in "normal" space, linear 
interpolation was employed. The narrowest in- 
terpolations occurred at the lowest altitudes 
where At = 0.244 km corresponded to 
Az = 0.109 km while the widest interpolations 
occurred at the highest altitudes where 
At = 0.244 km corresponded to Az = 0.632 km. 
Thus the widest possible interpolations ranged 
from 0.122 km to 0.316 km at the lowest and 
highest altitudes respectively. 

Figure 4 shows the prescribed and 
obtained PSD's for the structure in the 
horizontal dimension at 51.2 km altitude. The 
solid curve represents the theoretical PSD 
where the prescribed horizontal correlation 
length takes on a value of Lc = 32.9 km. The 
dashed curve represents the  autoregressively 

Altitude (km) 

Figure 5. Prescribed (smooth curve) and obtained 
(variable curve) variance plotted as a 
function of altitude. 



Figure 6 is a false color representation of the two-dimensional vertical sheet of non- 
stationary stochastic structure generated from the methods described above. The horizontal range 
is 0 - 819.2 km with a resolution of 1.6 km and the vertical range is 50 - 300 km with a resolution 
of 0. 714 km. Figure 6 reveals that the relative temperature fluctuation can exceed ±100% of the 
background temperature, which leads to some negative temperatures. This is due to the rather 
large values of prescribed temperature variance, assumed gaussian distribution, and realizations of 
large variances in the synthetic structure. For example Figure 5 shows a specified standard 
deviation, cr, of 0.3 at 260 km with a realized a of about 0.4. Invoking the gaussian distribution 
of stochastic samples, -3cr values will produce negative temperatures. To avoid this effect, one 
could employ a different statistical distribution that is everywhere positive and provides additive 
properties. We note that the Chi Square distribution has these properties. Investigations are 
continuing to determine the appropriateness of using a different distribution. 

5. CONCLUSION 

Geophysical phenomena within a specified domain are often characterized by smooth 
continuous power spectral densities having a negative power law slope. A single pass stochastic 
one-dimensional autoregressive approach was employed to generate vertically correlated synthetic 
structure in "stretched space". The AR approach also was used to obtain synthetically correlated 
structure in the horizontal dimension. The joint goals of reducing the computational burden and of 
generating vertical sheets of non-stationary synthetic structure that is faithful to the prescribed 
descriptions were achieved. A complete two dimensional array consisting of 8192 horizontal by 
1024 vertical points was generated on the Phillips Laboratory DEC Alpha architecture computer 
with an average execution time of 3 minutes. The process preserved the power spectral density 
law, correlation scale, variance, and probability density function. 
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Figure 6. False color realization of two-dimensional vertical sheet of 
non-stationary stochastic structure. 
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